OPSTAT provides the analysis of diallel crosses laid out in Randomised Block Design using Griffing’s (1956) approach (all four methods).
The data arrangement schemes for Griffing’s approach are explained for the analysis of data for a full diallel, i.e., Parents, F1s, and reciprocal F1s. If 8 parents (v = 8) are involved in a full diallel producing 64 crosses, arrange the data so that all the crosses with parent 1 come first: 1 x 1, 1 x 2, 1 x 3, and so on. Method-2 excludes data for reciprocal F1s, while Method-3 includes them, and Method-4 includes only F1s.
Data arrangement in a text area of the web page for diallel analysis using Griffing’s approach is as explained above. Enter the data of all the replications for the first cross (1 x 1) in the first line, separating replications by at least a space or tab. Enter the data for the second cross (1 x 2) in the second line, and so on for all crosses. If analyzing more than one character, enter the data of the second character after the first in the same manner.
The data arrangement in the text area for Method 1 looks like the following:
The data arrangement for Method 1 looks like:
Sample data arrangement of Method-1 having 8 Parents, 4 replication and 1 character Crosses R1 R2 R3 R4 1 X 1 104.86 84.32 76.92 76.48 1 X 2 88.66 105.04 80.8 73.54 1 X 3 109.76 78.22 74.52 99.52 1 X 4 128.1 123.84 92.56 115.28 1 X 5 128.36 119.84 103.24 129.72 1 X 6 74.4 70.86 60.94 68 1 X 7 91.82 99.18 118.88 120.68 1 X 8 48.08 62.1 58.54 41.84 2 X 1 88.7 69.1 76.8 88.16 2 X 2 88.02 106.52 89.82 108.68 2 X 3 110.16 116.26 99.76 120.12 2 X 4 101.26 80.22 82.84 88.36 2 X 5 91.52 113.96 87.26 106.98 2 X 6 59.06 65.62 81.62 86.76 2 X 7 84.16 109.74 102.14 94.52 2 X 8 96.92 91.44 79.86 74.38 3 X 1 75.28 124.74 94.56 114.34 3 X 2 112.48 92.76 90.62 122.36 3 X 3 77.94 71.34 77.52 69.48 3 X 4 111.44 119.96 84.76 86.42 3 X 5 96.88 100.86 86.88 92.52 3 X 6 109.86 98.16 93.26 102.26 3 X 7 117.2 100.28 116.16 112.52 3 X 8 109.68 116.48 123.92 120.86 4 X 1 124.26 132.48 114.38 105.34 4 X 2 92.18 82.16 81.66 101.24 4 X 3 98.08 90.94 96.2 125.48 4 X 4 80.82 106.54 83.28 95.92 4 X 5 86.2 76.36 79.06 99.52 4 X 6 103.14 109.66 90.98 119.4 4 X 7 53.4 60.86 74.46 69.08 4 X 8 53.86 48.3 40.64 44.62 5 X 1 109.74 99.56 110.18 125.68 5 X 2 109.94 117.52 95.56 88.54 5 X 3 89.56 94.56 83.66 85.28 5 X 4 80.96 71.98 91.34 89.28 5 X 5 59.96 52.48 52.98 50.98 5 X 6 98.46 73.1 89.18 75.86 5 X 7 81.36 72.82 89.82 83.74 5 X 8 86.62 94.18 90.32 108.16 6 X 1 72.92 76.28 61.66 64.48 6 X 2 58.56 86.72 65.26 74.64 6 X 3 104.18 100.24 85.12 108.76 6 X 4 109.44 97.74 121.1 106.38 6 X 5 81.58 95.52 84.48 90.28 6 X 6 96.44 98.82 99.14 107.16 6 X 7 140.5 125.96 113.02 106.96 6 X 8 55.08 52.88 42.92 64.08 7 X 1 119.56 90.22 113.92 113.36 7 X 2 106.52 84.38 83.92 76.46 7 X 3 98.54 103.38 119.48 112.38 7 X 4 58.92 54.78 63.92 52.98 7 X 5 70.28 79.84 80.42 84.46 7 X 6 109.84 137.92 94.08 120.84 7 X 7 91.44 99.66 89.46 83.28 7 X 8 116.28 129.5 142.84 112.46 8 X 1 47.46 43.26 56.72 47.44 8 X 2 85.82 80.22 76.3 90.24 8 X 3 105.26 120.38 112.26 123.7 8 X 4 46.2 41.82 52.66 46.28 8 X 5 80.52 98.56 90.84 103.36 8 X 6 45.72 58.62 70.82 65.8 8 X 7 105.5 120.94 114.06 132.18 8 X 8 91.78 84.82 69.92 81.48 Note use only numer Data. Donot Enter 1 X 2, 1 X 3 ... and R1, R2, R3 etc
The data arrangement for Method 2 looks like:
Sample data arrangement of Method-2 having 8 Parents, 4 replication and 1 character Crosses R1 R2 R3 R4 1 x 1 104.86 84.32 76.92 76.48 1 x 2 88.66 105.04 80.8 73.54 1 x 3 109.76 78.22 74.52 99.52 1 x 4 128.1 123.84 92.56 115.28 1 x 5 128.36 119.84 103.24 129.72 1 x 6 74.4 70.86 60.94 68 1 x 7 91.82 99.18 118.88 120.68 1 x 8 48.08 62.1 58.54 41.84 2 x 2 88.02 106.52 89.82 108.68 2 x 3 110.16 116.26 99.76 120.12 2 x 4 101.26 80.22 82.84 88.36 2 x 5 91.52 113.96 87.26 106.98 2 x 6 59.06 65.62 81.62 86.76 2 x 7 84.16 109.74 102.14 94.52 2 x 8 96.92 91.44 79.86 74.38 3 x 3 77.94 71.34 77.52 69.48 3 x 4 111.44 119.96 84.76 86.42 3 x 5 96.88 100.86 86.88 92.52 3 x 6 109.86 98.16 93.26 102.26 3 x 7 117.2 100.28 116.16 112.52 3 x 8 109.68 116.48 123.92 120.86 4 x 4 80.82 106.54 83.28 95.92 4 x 5 86.2 76.36 79.06 99.52 4 x 6 103.14 109.66 90.98 119.4 4 x 7 53.4 60.86 74.46 69.08 4 x 8 53.86 48.3 40.64 44.62 5 x 5 59.96 52.48 52.98 50.98 5 x 6 98.46 73.1 89.18 75.86 5 x 7 81.36 72.82 89.82 83.74 5 x 8 86.62 94.18 90.32 108.16 6 x 6 96.44 98.82 99.14 107.16 6 x 7 140.5 125.96 113.02 106.96 6 x 8 55.08 52.88 42.92 64.08 7 x 7 91.44 99.66 89.46 83.28 7 x 8 116.28 129.5 142.84 112.46 8 x 8 91.78 84.82 69.92 81.48 Note use only numer Data. Donot Enter 1 X 2, 1 X 3 ... and R1, R2, R3 etc
The data arrangement for Method 3 looks like:
Sample data arrangement for Method-3 is Crossess R1 R2 R3 1 X 2 123 124 124 1 X 3 125 125 123 1 X 4 126 126 125 1 X 5 123 124 122 1 X 6 123 123 122 1 X 7 121 125 125 1 X 8 121 122 120 2 X 1 124 124 122 2 X 3 119 120 119 2 X 4 121 120 122 2 X 5 120 120 121 2 X 6 124 122 121 2 X 7 121 119 122 2 X 8 118 119 119 3 X 1 125 122 121 3 X 2 127 126 126 3 X 4 122 123 121 3 X 5 118 120 118 3 X 6 121 120 121 3 X 7 127 126 127 3 X 8 126 124 124 4 X 1 127 128 127 4 X 2 126 126 125 4 X 3 125 125 125 4 X 5 120 121 121 4 X 6 124 124 124 4 X 7 121 124 123 4 X 8 122 125 124 5 X 1 123 123 123 5 X 2 126 125 127 5 X 3 126 126 125 5 X 4 125 124 125 5 X 6 126 126 125 5 X 7 122 122 123 5 X 8 128 123 120 6 X 1 127 127 127 6 X 2 127 124 125 6 X 3 123 123 122 6 X 4 126 128 125 6 X 5 126 126 126 6 X 7 126 127 125 6 X 8 124 125 126 7 X 1 127 127 128 7 X 2 125 124 125 7 X 3 126 127 126 7 X 4 126 126 126 7 X 5 124 125 124 7 X 6 126 126 126 7 X 8 125 126 124 8 X 1 125 125 125 8 X 2 124 122 122 8 X 3 122 122 122 8 X 4 122 123 121 8 X 5 122 121 122 8 X 6 124 124 124 8 X 7 123 124 122 Note use only numer Data. Donot Enter 1 X 2, 1 X 3 ... and R1, R2, R3 etc